Exercises

Systems of Linear Equations – Solutions

Exercise 1.

(a)
$$\begin{array}{c|cccc}
x_1 & x_2 & \text{rhs} \\
\hline
1 & 2 & 8 \\
4 & 3 & 17 \\
\hline
1 & 2 & 8 \\
0 & -5 & -15 \\
\hline
1 & 0 & 2 \\
0 & 1 & 3 \\
\end{array}$$

$$\Rightarrow x = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \quad \mathcal{L} = \{x\}$$

Unique Solution.

$$\implies$$
 0 \neq 1 No solution, i.e. $\mathcal{L} = \emptyset$

$$\implies \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} + x_1 \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \quad x_1, x_3 \in \mathbb{R}$$

Infinitely many solutions:

$$\mathcal{L} = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \quad t_1, t_2 \in \mathbb{R} \right\}$$

(d)
$$\frac{x_1 \quad x_2 \quad x_3 \quad \text{rhs}}{1 \quad 2 \quad 3 \quad 0}$$

$$4 \quad 5 \quad 6 \quad 3$$

$$7 \quad 8 \quad 9 \quad 6$$

$$1 \quad 2 \quad 3 \quad 0$$

$$0 \quad -3 \quad -6 \quad 3$$

$$0 \quad -6 \quad -12 \quad 6$$

$$1 \quad 0 \quad -1 \quad 2$$

$$0 \quad 1 \quad 2 \quad -1$$

$$0 \quad 0 \quad 0 \quad 0$$

$$\Rightarrow \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \quad x_3 \in \mathbb{R}$$

Infinitely many solutions:

$$\mathcal{L} = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \quad t_1, \in \mathbb{R} \right\}$$

Exercise 2.

\mathfrak{u}_1	\mathfrak{u}_2	\mathfrak{u}_3	e_1	e_2	e_3
2	-2	1	1	0	0
-1	1	0	0	1	0
2	1	-2	0	0	1
0	0	1	1	2	0
-1	1	0	0	1	0
3	0	-2	0	-1	1
0	0	1	1	2	0
-1	1	0	0	1	0
3	0	0	2	3	1
0	0	1	1	2	0
0	1	0	$\frac{2}{3}$	2	$\frac{1}{3}$
1	0	0	$\frac{2}{3}$	1	$\frac{1}{3}$
1	0	0	$\frac{2}{3}$	1	$\frac{1}{3}$
0	1	0	$\frac{2}{3}$	2	$\frac{1}{3}$
0	0	1	1	2	0

$$A^{-1} = \begin{pmatrix} \frac{2}{3} & 1 & \frac{1}{3} \\ \frac{2}{3} & 2 & \frac{1}{3} \\ 1 & 2 & 0 \end{pmatrix}$$

Exercise 3.

- (a) Since $v_1 = -1 \cdot v_2$ the vectors are clearly linear dependent.
- (b) The matrix

$$\begin{pmatrix}
1 & 3 & 5 \\
3 & 9 & 10 \\
0 & 2 & 7 \\
2 & 8 & 12
\end{pmatrix}$$

has rank 3 and thus the vectors are linear independent.

Exercise 4.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{b+2}{3} \\ 0 \\ \frac{2-2b}{3} \end{pmatrix} + t \begin{pmatrix} -\frac{2-a}{3} \\ 1 \\ \frac{a+4}{3} \end{pmatrix}, t \in \mathbb{R}$$

Exercise 5. Let $a \neq 0$. Then:

\mathfrak{u}_1	\mathfrak{u}_2	e_1	e_2
a	b	1	0
c	d	0	1
1	$\frac{b}{a}$	$\frac{1}{a}$	0
0	$d - \frac{bc}{a}$	$-\frac{c}{a}$	1
1	0	$\frac{d}{ad-bc}$	$-\frac{b}{ad-bc}$
0	1	$-\frac{c}{ad-bc}$	$\frac{a}{ad-bc}$

where we used

$$\frac{1}{a} + \frac{b}{a} \cdot \frac{c}{a\left(d - c\frac{b}{a}\right)} = \frac{d}{ad - bc}.$$

For the last step we need $ad - bc \neq 0$.

If $\alpha=0$ but $c\neq 0$ we get the same inverse as long as $\alpha d-bc\neq 0$. If $\alpha d-\alpha c$ (which in particular is the case if $\alpha=c=0$) then there is no inverse. Overall, we have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{for } ad - bc \neq 0$$

Exercise 6. Solving the linear equations yields:

1	1	1	2q
2	-3	2	4q
3	-2	p	q
1	1	1	2q
0	-5	0	0
0	-5	p-3	-5q
1	0	1	2q
0	1	0	0
0	0	p-3	-5q

$$\iff x_2 = 0$$

$$x_1 = 2q - x_3$$

$$(p-3)x_3 = -5q$$

- (i) The system has a unique solution $\iff p \neq 3$
- (ii) The system has no solution $\iff \mathfrak{p}=3\,,\,\,\mathfrak{q}\neq 0$
- (iii) The system has infinitely many solutions $\iff \mathfrak{p}=3\,,\,\,\mathfrak{q}=0$